Author Archives: Clement Canonne

Guest Post: Oded Goldreich, “Reducing testing affine spaces to testing linearity”

[We are delighted to have this month a blog post by Oded Goldreich, on a reduction from testing affinity of subspaces to testing linearity of Boolean functions. Oded also gave us open problems directly related to this post.]

We consider the task of testing whether a Boolean function \(f\colon \{0,1\}^\ell\to\{0,1\}\) is the indicator function of an \((\ell-k)\)-dimensional space. An optimal tester for this property was presented by Parnas, Ron, and Samorodnitsky (SIDMA, 2002), by mimicking the celebrated linearity tester (of Blum, Luby and Rubinfeld, JCSS, 1993) and its analysis. We show that this task can be reduced to testing the linearity of a related function \(g\colon\{0,1\}^\ell\to\{0,1\}^k\), yielding an almost optimal tester.

Continue reading

News for March 2016

While March 2016 has been rather low in terms of property testing, we did see a new paper appear:

A Note on Tolerant Testing with One-Sided Error, by Roei Tell (ECCC). A natural generalization of property testing is that of tolerant testing, as introduced by Parnas, Ron, and Rubinfeld [PRR06]: where the tester still must reject all objects that are far from satisfying the property, but now also has to accept those that are sufficiently close (all that with constant probability). In this work is considered the question of one-sidedness of tolerant testers: namely, is it possible to only err on the farness side, but accept close output with probability one? As it turns out, it is not — the author shows that any such one-sided tolerant tester, for basically any property of interest, must essentially query the whole input…

Universal Locally Testable Codes, by Oded Goldreich and Tom Gur (ECCC). In this work, the authors introduce and initiate the study of an extension of locally testable codes they name universal locally testable codes (universal-LTC). At a high-level, a universal-LTC (with regard to a family of functions \(\cal F\)) is a locally testable code \(C\) “for which the restrictions (subcodes) of \(C\) by functions in \(\cal F\) are also locally testable.” In other terms, one is then able to test efficiently, given an encoded string \(w\), if (i) \(w=C(x)\) for some \(x\); but also, for any \(f\in \cal F\), if (ii) \(w=C(x)\) for some \(x\) that satisfies \(f(x)=1\).

Edit (04/06): added the work of Goldreich and Gur, which was overlooked in our first version of the article.