News for May 2014

May seems to be a slow month for property testing, with only one paper on locally testable codes. Nonetheless, we have unearthed a paper from April (missed despite our best efforts) on a related topic of hidden set approximations.

The Power of an Example: Hidden Set Size Approximation Using Group Queries and Conditional Sampling by Dana Ron and Gilad Tsur (arXiv). Consider a known universe \(U\) and an unknown subset \(S\). Our aim is to approximately determine \(|S|\). We can perform subset queries: for a query subset \(T\), an oracle returns whether \(T \cap S \neq \emptyset\) or (a more powerful model) the oracle returns a uniform random element in \(T \cap S\). This paper gives a detailed study of this problem under various settings. There is a fascinating array of upper and lower bounds, including situations where \(U\) is ordered and \(T\) must be an interval, the difference between adaptivity and non-adaptivity, arbitrary subset queries, and much more. The topic seems to be quite rich, and it should yield some nice sets of problems to study further. It appears that some lower bounds are quite open. Students, pay attention!

Limitations on Testable Affine-Invariant Codes in the High-Rate Regime by Venkatesan Guruswami, Madhu Sudan, Ameya Velingker, and Carol Wang (ECCC). Locally Testable Codes (LTCs) are codes that (typically) have a constant time tester. Interestingly, recent work on testing codes using a linear number of queries (some small constant fraction of the code length) has connections to the Small Set Expansion (SSE) problem, which in turn is related to the famous Unique Games Conjecture (UGC). A paper by Barak et al. gives a construction of a small set expander (a graph where all small sets have high conductance) where the Laplacian has many small eigenvalues (so it’s “difficult” to find a low conductance cut). This construction uses high-rate LTCs that are linear time testable. In some sense, the better the rate, the better construction one gets. This paper asks how far this idea can go. So the idea is to construct the best rate linear-time testable LTC. Reed-Muller codes fall in this category, but their rate is quite far from optimal. Recent work by Guo et al. gives a slightly better construction, but this is far from the (near) optimal rate achieved by BCH codes (which are not known to be testable). All in all, this paper shows that for affine-invariant codes, the Guo et al. construction is essentially the best testable high-rate code one can get. I have obviously done no justice to the depth of the connections, the intricacies of the parameters, or the overall coolness of this subject. So go read the paper!

Leave a Reply

Your email address will not be published.

Time limit is exhausted. Please reload the CAPTCHA.