News for April 2014

As winter finally releases its grip here on the east coast, we celebrate with forests, with bounded-derivative properties, and with hypergraphs. (I believe these are the traditional ingredients for the beginning-of-spring celebrations in New England, but I could be wrong.)

Testing Forest-Isomorphism in the Adjacency List Model by Mitsuru Kusumoto and Yuichi Yoshida (arXiv). Which properties of sparse graphs can we test efficiently? To a large extent, this fundamental question remains open. The natural setting in which to study this question is the adjacency list query model. In this model, a testing algorithm can select any vertex \(v\) and index \(i\); it then receives the identity \(w\) of the \(i\)th neighbor of \(v\). Kusumoto and Yoshida show that in this model, we can test if two forests (i.e., collections of trees) on \(n\) vertices are identical up to relabeling of the vertices with polylog(\(n\)) queries. They also show that, remarkably, this tester can be used to test any property of forests in the adjacency list model with polylog(\(n\)) queries.

Property Testing on Product Distributions: Optimal Testers for Bounded Derivative Properties by Deeparnab Chakrabarty, Kashyap Dixit, Madhav Jha, and C. Seshadhri (arXiv). Two basic properties of a function \(f : [n]^d \to \mathbb{R}\) on the hypergrid are monotonicity and the Lipschitz property. These two properties are special cases of a more general class of properties called bounded-derivative properties. In this paper, the authors give optimal bounds on the number of queries required to test these properties over every product distribution on the hypergrid. These results are obtained by deriving new dimension-reduction results and, most interestingly, by establishing and exploiting a strong connection between bounded-derivative properties and binary search trees.

Any Monotone Property of 3-uniform Hypergraphs is Weakly Evasive by Raghav Kulkarni, Youming Qiao, and Xiaoming Sun (ECCC). What happens if we remove the distance promise in the definition of property testing? Or, equivalently, how efficient can testers be if they must distinguish objects with some property \(P\) from every object that does not have the property \(P\)? The answer to this question seems completely obvious: no non-trivial property can be tested in this setting with a sublinear number of queries. We can easily verify that this answer is indeed correct for our favorite properties… but is it really true for every non-trivial property? As it turns out, this question is far from trivial, and in fact leads to the famous evasiveness conjectures and to the celebrated results of Rivest and Vuillemin and of Kahn, Saks, and Sturvevant. The current paper combines and extends ideas from both of these papers to show that deterministic testers for any monotone non-trivial property of 3-uniform hypergraphs indeed have linear query complexity.

Leave a Reply

Your email address will not be published.

Time limit is exhausted. Please reload the CAPTCHA.