The month of September was quite busy, with seven papers, spanning (hyper)graphs, proofs, probability distributions, and sampling.
Better Sum Estimation via Weighted Sampling, by Lorenzo Beretta and Jakub Tětek (arXiv). This paper considers the following question: “given a large universe of items, each with an unknown weight, estimate the total weight to a multiplicative \(1\pm \varepsilon\).” The key is in the type of access you have to those items: here, the authors consider the setting where items can be sampled proportionally to their unknown weights, and show improved bounds on the sample/query complexity in this model. And there something for everyone: they also discuss connections to edge estimation in graphs (assuming random edge queries) and to distribution testing (specifically, in the “dual” or “probability-revealing” models of Canonne–Rubinfeld and Onak–Sun).
This gives us an easy segue to distribution testing, which is the focus of the next two papers.
As Easy as ABC: Adaptive Binning Coincidence Test for Uniformity Testing, by Sudeep Salgia, Qing Zhao, and Lang Tong (arXiv). Most of the work in distribution testing (from the computer science community) focuses on discrete probability distributions, for several reasons. Including a technical one: total variation distance is rather fickle with continuous distributions, unless one makes some assumption on the unknown distribution. This paper does exactly this: assuming the unknown distribution has a Lipschitz density function, it shows how to test uniformity by adaptively discretizing the domain, achieving (near) sample complexity.
Exploring the Gap between Tolerant and Non-tolerant Distribution Testing, by Sourav Chakraborty, Eldar Fischer, Arijit Ghosh, Gopinath Mishra, and Sayantan Sen (arXiv). It is known that tolerant testing of distributions can be much harder than “standard” testing – for instance, for identity testing, the sample complexity can blow up by nearly a quadratic factor, from \(\sqrt{n}\) to \(\frac{n}{\log n}\)! But is it the worse that can happen, in general, for other properties? This work explores this question, and answers it in some notable cases of interest, such as for label-invariant (symmetric) properties.
And now, onto graphs!
Approximating the Arboricity in Sublinear Time, by Talya Eden, Saleet Mossel, and Dana Ron (arXiv). The arboricity of a graph is the minimal number of spanning forests required to cover all its edges. Many graph algorithms, especially sublinear-time ones, can be parameterized by this quantity: which is very useful, but what do you do if you don’t know the arboricity of your graph? Well, then you estimate it. Which this paper shows how to do efficiently, given degree and neighbor queries. Moreover, the bound they obtain — \(\tilde{O}(n/\alpha)\) queries to obtain a constant-factor approximation of the unknown arboricity \(\alpha\) — is optimal, up to logarithmic factors in the number of vertices \(n\).
Sampling Multiple Nodes in Large Networks: Beyond Random Walks, by Omri Ben-Eliezer, Talya Eden, Joel Oren, and Dimitris Fotakis (arXiv). Another thing which one typically wants to do with very large graphs is sample nodes from them, either uniformly or according to some prescribed distribution. This is a core building block in many other algorithms; unfortunately, approaches to do so via random walks will typically require a number of queries scaling with the mixing time \(t_{\rm mix}(G)\) of the graph \(G\), which might be very small for nicely expanding graphs, but not so great in many practical settings. This paper proposes and experimentally evaluates a different algorithm which bypasses this linear dependence on \(t_{\rm mix}(G)\), by first going through a random-walk-based “learning” phase (learn something about the structure of the graph) before using this learned structure to perform faster sampling, focusing on small connected components.
Why stop at graphs? Hypergraphs!
Hypergraph regularity and random sampling, by Felix Joos, Jaehoon Kim, Daniela Kühn, Deryk Osthus (arXiv). The main result in this paper is a hypergraph analogue of a result of Alon, Fischer, Newman and Shapira (for graphs), which roughly states that if a hypergraph satisfies some regularity condition, then so does with high probability a randomly sampled sub-hypergraph — and conversely. This in turn has direct implications to characterizing which hypergraph properties are testable: see the companion paper, by the same authors.
(Note: this paper is a blast from the past, as the result it shows was originally established in the linked companion paper, from 2017; however, the authors split this paper in two this October, leading to this new, standalone paper.)
And, to conclude, Arthur, Merlin, and proofs:
Sample-Based Proofs of Proximity, by Guy Goldberg, Guy Rothblum (ECCC). Finally, consider the setting of interactive proofs of proximities (IPPs), where the prover is as usual computationally unbounded, but the verifier must run in sublinear time (à la property testing). This has received significant interest in the past years: but what if the verifier didn’t even get to make queries, but only got access to uniformly random locations of the input? These “SIPP” (Sample-based IPPs), and their non-interactive counterpart SAMPs (Sample-based Merlin-Arthur Proofs of Proximity) are the object of study of this paper, which it introduces and motivates in the context, for instance, of delegation of computation for sample-based algorithms.