Monthly Archives: December 2024

News for November 2024

Alas, another late post! But we compensate for that. With a rich hoard of ten papers this month, covering quantum property testing, distribution testing, matchings, Steiner trees, linearity testing, and dealing with corruptions. And some papers on multiple topics simultaneously.

Uniformity testing when you have the source code by ClĂ©ment L. Canonne, Robin Kothari, and Ryan O’Donnell (arXiv). Consider classic problem of uniformity testing, where the domain is \([d]\). We all know by now that the complexity of uniformity testing is \(\Theta(\sqrt{d}/\varepsilon^2)\), where \(\varepsilon\) is the proximity parameter. Suppose the distribution was the output of an algorithm (like, a hash function) and we have access to the source code. (The source code is thought of as a circuit that outputs a single domain element.) Can we beat this bound? Surprisingly, the answer is yes, when the tester is allowed to be quantum. A single “sample” is basically a run of the code. The main result is an upper bound of \(O(d^{1/3}/\varepsilon^{4/3})\) (with some additional terms for the low \(\varepsilon\) setting). Tight lower bounds for this setting are still unknown, so this research direction of “distribution testing with the source code” may lead to many more results.

Coherence in Property Testing: Quantum-Classical Collapses and Separations by Fernando Jeronimo, Nir Magrafta, Joseph Slote, and Pei Wu (ECCC). The distribution testing problem again, where the domain is \(\{0,1\}^n\) and thought of as exponentially large. To distinguish (say) a uniform distribution with support size \(2^{n/8}\) vs support size \(2^{n/4}\) would require exponentially many (\(2^{n/16}\)) samples. From a quantum standpoint, we can restrict the input distribution to be coherent. Intuitively, this is analogous to being restricted to a subcube. Even then, the paper shows that the testing problem requires exponentially many samples. To show a separation between classical and quantum algorithms, the paper gives a model of interactive protocols for distribution testing (which has been studied before in the classical setting, like Chiesa-Gur). In this setting, the paper gives a quantum algorithm that runs in \(\textrm{poly}(n)\) time with polynomially many proof strings, and can approximate the support size of coherent distributions. Classical algorithms, on the other hand, still require exponentially many queries, even with access to proof strings.

Testing classical properties from quantum data by Matthias C. Caro, Preksha Naik, and Joseph Slote (arXiv). Property testing gains its power because of query access, since the tester can “zero in” on the relevant portion of the data. Sample based testers often have far worse complexities. Such testers only get access to random samples of the data/function. Consider access to a function \(f:\{0,1\}^n \rightarrow \{0,1\}\). The classic property of monotonicity can be tested in \(\sqrt{n}\) queries (ignoring the proximity parameter dependencies), but requires \(2^{\Theta(\sqrt{n})}\) samples. The paper studies sample based property testing, except with quantum “samples”. In the quantum world, the function \(f\) is stored/represented as a quantum superposition of states. Quantum samples can obtain richer information, like sampling the Fourier coefficients of \(f\). (Quantum queries give even stronger access.) This allows for many classical query-based property testers to become quantum sample-based testers. This paper gives results for many fundamental properties like monotonicity, symmetry, and triangle freeness.

Tolerant Testing of Stabilizer States with Mixed State Inputs by Vishnu Iyer and Daniel Liang (arXiv). Another quantum testing paper, but here, the property itself is quantum. The input is a quantum state, and the aim is test the property of being a stabilizer state. In all previous work on property testing of being a stabilizer, it was assumed that the input is a pure state. (One should think of a pure state as a sort of “basis” state, while a mixed state is a linear combination of these states.) Given noise, one would typically expect the input to be mixed. This paper gives the first tolerant tester for stabilizer states, where the input is allowed to be a mixed state.

Stochastic Matching via In-n-Out Local Computation Algorithms by Amir Azarmehr, Soheil Behnezhad, Alma Ghafari, and Ronitt Rubinfeld (arXiv). This is not a sublinear result by itself, but has connections that should interest our readers. The main problem is stochastic matching. We are given a graph \(G\). An input \(G_p\) is generated by keeping each edge independently with probability \(p\). The aim is to construct a sparse graph \(H\) such that the expected matching size of \(H \cap G_p\) is close to the expected matching size of \(G_p\). After a long line of work, this paper shows that there exists a subgraph \(H\) of \(\textrm{poly}(1/p)\) degree whose expected matching size is a \((1-\varepsilon)\)-approximation of the overall expectation. The main analysis technique is to study a local computation algorithm (LCA) for computing the maximum matching. An LCA essentially gives local access to a large output (say, a matching or coloring) such that each matching edge (say) of the output can be computed with sublinear lookups to the input. The standard complexity measure is the number of lookups of the input to compute a matching edge. But this paper looks at the “in complexity”, which is the number of queries that lookup a given edge. When both complexities are small, one can show a “decorrelation” of the overall output, which is used in the analysis.

Nearly Tight Bounds on Testing of Metric Properties by Yiqiao Bao, Sampath Kannan, and Erik Waingarten (arXiv). Consider an \(n \times n\) matrix of “distances” between \(n\) points. The aim is to test the fundamental property of the distances forming a metric. Despite a long line of work studying property testing of distances, points, etc., there has surprisingly been no result on this problem. The earliest work in this line is by Parnas-Ron, studying the property of being a tree metric or ultrametric (which satisfy a stronger version of triangle inequality). This paper gives a \(O(n^{2/3}/\varepsilon^{4/3})\) query algorithm for property testing metrics. There is a also a nearly matching lower bound, if one assumes that the dependence on \(\varepsilon\) is polynomial. For the problems of testing tree metrics (and ultrametrics), the paper gives a \(O(1/\varepsilon^2)\) query algorithm, an improvement from the previous bound of \(O(1/\varepsilon^6)\).

Sublinear Metric Steiner Tree via Improved Bounds for Set Cover by Sepideh Mahabadi, Mohammad Roghani, Jakub Tarnawski, Ali Vakilian (arXiv). This paper is on the classic metric Steiner tree problem. The input is an \(n \times n\) matrix of distances in a metric and a subset \(S\) of points. The aim is to estimate the minimum weight Steiner tree (a tree that connects all the terminals \(S\)). Getting a \(2\)-approximation is quite easy, since one can just consider a spanning tree on \(S\). A result of Chen-Khanna-Tan give a \((2-\eta)\)-approximation algorithm that runs in \(O(n^{13/7})\) queries (for some positive constant \(\eta\)). This paper gets the same approximation with \(O(n^{5/3})\) queries. The main technical work goes in designing a sublinear algorithm for a version of set cover problem, where the input set system is given as a matrix.

On Optimal Testing of Linearity by Vipul Arora, Esty Kelman, Uri Meir (arXiv). In property testing, it’s hard to get more fundamental than linearity testing. What is there new to say about this well-studied problem? This paper studies linearity testing under the online manipulations model of Kalemaj-Raskhodnikova-Varma. In this model, after every query of the tester, an adversary corrupts up to \(t\) entries on the input. Previous results show that linearity testing can be done in \(O(\log t + 1/\varepsilon)\) queries. But, the paper notes, all previous results require \(t \leq 2^{n/c}\) for some \(c \geq 2\). How far can be push \(t\)? Remarkably, the main result shows that \(t\) can be as large as \(2^n/\varepsilon^2\) and linearity testing is still feasible under online manipulations. The next result of this paper studies the property of low degree polynomials over the reals. The paper gives an optimal \(O(1/\varepsilon)\)-query tester for the property of being a \(d\)-degree polynomial.

Online versus Offline Adversaries in Property Testing by Esty Kelman, Ephraim Linder, and Sofya Raskhodnikova (arXiv). This paper is related to the online manipulations model discussed above. There is also an offline “erasure” model, wherein some coordinates/bits of the input are erased by an adversary. The original paper of Kalemaj-Raskhodnikova-Varma showed that sortedness of arrays can be tested with offline erasures, but cannot be tested with online erasures even when \(t=1\). This paper proves a complementary theorem. There are properties that can be tested with a \(O(1)\) queries for \(t = O(n/\log n)\) in the online manipulations model, but requires \(\Omega(\log n)\) queries in the offline setting with \(\Theta(n/\log\log n)\) erasures. So the online and offline models are incomparable in power. There is a similar result for a setting where \(t\) is constant. The lower bounds are shown using a property regarding repeated characters in strings.