News for December 2024

Happy New Year to you and your loved ones! Welcome to the first post of 2025. This month, we feature four papers: one on property testing in the huge object model, two on distribution testing, and a fourth that, while not strictly a property testing paper, was too intriguing to ignore. The last paper recounts the resolution of a fascinating bet between Peter Sarnak and Noga Alon. With that teaser, let’s dive in!

Testing vs Estimation for Index-Invariant Properties in the Huge Object Model by Sourav Chakraborty, Eldar Fischer, Arijit Ghosh, Amit Levi, Gopinath Mishra, and Sayantan Sen (arXiv) Let me begin by reminding you the setup for distribution testing in the huge object model which was introduced by Goldreich and Ron. Here is a brief refresher of this model. Suppose you want to test whether a distribution \(\mathcal{D}\), supported over the Boolean hypercube, satisfies a certain property \(\mathcal{P}\). To do this, you sample a string \(x \sim \mathcal{D}\), where \(x\) is of length \(n\). Huge object model considers situations where \(n\) is very large and so you instead assume query access to the sampled strings. In this model, the distribution \(\mathcal{D}\) is considered \(\varepsilon\)-far from \(\mathcal{P}\) if the earthmover distance (EMD) between \(\mathcal{D}\) and the closest distribution satisfying \(\mathcal{P}\), measured with respect to the relative Hamming distance between bitstrings, is at least \(\varepsilon\). In our July 2022 post, we covered a paper by a subset of the authors which presented efficient testers in this model for index-invariant properties whose support had bounded VC dimension.

The main result of the featured paper shows the following. For an index invariant property, you can basically upgrade a plain tester to a tolerant tester. Thus, the ability to efficiently \(\varepsilon\)-test an index-invariant distribution property in the huge object model translates into an ability of being able to estimate distance from the property.

Optimal Algorithms for Augmented Testing of Discrete Distributions by Maryam Aliakbarpour, Piotr Indyk, Ronitt Rubinfeld, and Sandeep Silwal (arXiv) Let us take the standard setup of discrete distribution testing supported over \([n]\) with a slight twist. Suppose you can assume that the underlying distribution \(\boldsymbol{p}\) is not entirely unknown. As the paper argues, this might be a realistic assumption in distributions dealing with network traffic data or search engine queries. Among a couple more, the main result of this paper shows that indeed, with a good proxy \(\boldsymbol{p}’\) for the input distribution \(\boldsymbol{p}\) i.e., a situation where say \(\|\boldsymbol{p}’-\boldsymbol{u}\|_1 \gg \|\boldsymbol{p}’ – \boldsymbol{p}\|_1\) and \(\|\boldsymbol{p}’ – \boldsymbol{p}\|_1\) is small enough, you get testers for uniformity testing with sample complexity \(O(1)\). (Here, \(\boldsymbol{u}\) denotes the uniform distribution over \([n]\). In this framework, the authors also present algorithms with improved sample complexity for identity testing and closeness testing.

Settling the complexity of testing grainedness of distributions, and application to uniformity testing in the Huge Object model by Clement Canonne, Sayantan Sen, Qiping Yang (ECCC) A discrete distribution is called \(m\)-grained if all probabilities are integer multiples of \(1/m\). If you are a regular PTReview reader, you might recall our News for September 2021 which featured a paper by Goldreich and Ron which proved an \(\Omega(n^c)\) lower bound for testing \(m\)-grainedness for any \(c < 1\). Goldreich and Ron also conjectured that the true lower bound is actually \(\Omega(n/\log n)\) (when \(m = \Theta(n)\)). The current work resolves this conjecture settling the complexity of this problem.

Ramanujan Property and Edge Universality of Random Regular Graphs by Jiaoyang Huang, Theo Mckenzie, and Horng-Tzer Yau (arXiv) So, yes here is the (non-property testing paper) I wanted to tell you about. Let me start with the juicy bit, So, Peter Sarnak and Noga Alon had a bet about the following situation: Fix \(d \in \mathbb{N}\) and let us take a random \(d\)-regular graph. Sarnak conjectured that the probability this graph is in fact a Ramanujan expander goes to zero as \(n \to \infty\) whereas Alon conjectured that this probability tends to one as \(n \to \infty\). The featured paper shows that while this probability decreases with increasing \(n\), it approaches a limiting value which is around \(0.69\). You can watch this juicy bit here.

News for November 2024

Alas, another late post! But we compensate for that. With a rich hoard of ten papers this month, covering quantum property testing, distribution testing, matchings, Steiner trees, linearity testing, and dealing with corruptions. And some papers on multiple topics simultaneously.

Uniformity testing when you have the source code by Clément L. Canonne, Robin Kothari, and Ryan O’Donnell (arXiv). Consider classic problem of uniformity testing, where the domain is \([d]\). We all know by now that the complexity of uniformity testing is \(\Theta(\sqrt{d}/\varepsilon^2)\), where \(\varepsilon\) is the proximity parameter. Suppose the distribution was the output of an algorithm (like, a hash function) and we have access to the source code. (The source code is thought of as a circuit that outputs a single domain element.) Can we beat this bound? Surprisingly, the answer is yes, when the tester is allowed to be quantum. A single “sample” is basically a run of the code. The main result is an upper bound of \(O(d^{1/3}/\varepsilon^{4/3})\) (with some additional terms for the low \(\varepsilon\) setting). Tight lower bounds for this setting are still unknown, so this research direction of “distribution testing with the source code” may lead to many more results.

Coherence in Property Testing: Quantum-Classical Collapses and Separations by Fernando Jeronimo, Nir Magrafta, Joseph Slote, and Pei Wu (ECCC). The distribution testing problem again, where the domain is \(\{0,1\}^n\) and thought of as exponentially large. To distinguish (say) a uniform distribution with support size \(2^{n/8}\) vs support size \(2^{n/4}\) would require exponentially many (\(2^{n/16}\)) samples. From a quantum standpoint, we can restrict the input distribution to be coherent. Intuitively, this is analogous to being restricted to a subcube. Even then, the paper shows that the testing problem requires exponentially many samples. To show a separation between classical and quantum algorithms, the paper gives a model of interactive protocols for distribution testing (which has been studied before in the classical setting, like Chiesa-Gur). In this setting, the paper gives a quantum algorithm that runs in \(\textrm{poly}(n)\) time with polynomially many proof strings, and can approximate the support size of coherent distributions. Classical algorithms, on the other hand, still require exponentially many queries, even with access to proof strings.

Testing classical properties from quantum data by Matthias C. Caro, Preksha Naik, and Joseph Slote (arXiv). Property testing gains its power because of query access, since the tester can “zero in” on the relevant portion of the data. Sample based testers often have far worse complexities. Such testers only get access to random samples of the data/function. Consider access to a function \(f:\{0,1\}^n \rightarrow \{0,1\}\). The classic property of monotonicity can be tested in \(\sqrt{n}\) queries (ignoring the proximity parameter dependencies), but requires \(2^{\Theta(\sqrt{n})}\) samples. The paper studies sample based property testing, except with quantum “samples”. In the quantum world, the function \(f\) is stored/represented as a quantum superposition of states. Quantum samples can obtain richer information, like sampling the Fourier coefficients of \(f\). (Quantum queries give even stronger access.) This allows for many classical query-based property testers to become quantum sample-based testers. This paper gives results for many fundamental properties like monotonicity, symmetry, and triangle freeness.

Tolerant Testing of Stabilizer States with Mixed State Inputs by Vishnu Iyer and Daniel Liang (arXiv). Another quantum testing paper, but here, the property itself is quantum. The input is a quantum state, and the aim is test the property of being a stabilizer state. In all previous work on property testing of being a stabilizer, it was assumed that the input is a pure state. (One should think of a pure state as a sort of “basis” state, while a mixed state is a linear combination of these states.) Given noise, one would typically expect the input to be mixed. This paper gives the first tolerant tester for stabilizer states, where the input is allowed to be a mixed state.

Stochastic Matching via In-n-Out Local Computation Algorithms by Amir Azarmehr, Soheil Behnezhad, Alma Ghafari, and Ronitt Rubinfeld (arXiv). This is not a sublinear result by itself, but has connections that should interest our readers. The main problem is stochastic matching. We are given a graph \(G\). An input \(G_p\) is generated by keeping each edge independently with probability \(p\). The aim is to construct a sparse graph \(H\) such that the expected matching size of \(H \cap G_p\) is close to the expected matching size of \(G_p\). After a long line of work, this paper shows that there exists a subgraph \(H\) of \(\textrm{poly}(1/p)\) degree whose expected matching size is a \((1-\varepsilon)\)-approximation of the overall expectation. The main analysis technique is to study a local computation algorithm (LCA) for computing the maximum matching. An LCA essentially gives local access to a large output (say, a matching or coloring) such that each matching edge (say) of the output can be computed with sublinear lookups to the input. The standard complexity measure is the number of lookups of the input to compute a matching edge. But this paper looks at the “in complexity”, which is the number of queries that lookup a given edge. When both complexities are small, one can show a “decorrelation” of the overall output, which is used in the analysis.

Nearly Tight Bounds on Testing of Metric Properties by Yiqiao Bao, Sampath Kannan, and Erik Waingarten (arXiv). Consider an \(n \times n\) matrix of “distances” between \(n\) points. The aim is to test the fundamental property of the distances forming a metric. Despite a long line of work studying property testing of distances, points, etc., there has surprisingly been no result on this problem. The earliest work in this line is by Parnas-Ron, studying the property of being a tree metric or ultrametric (which satisfy a stronger version of triangle inequality). This paper gives a \(O(n^{2/3}/\varepsilon^{4/3})\) query algorithm for property testing metrics. There is a also a nearly matching lower bound, if one assumes that the dependence on \(\varepsilon\) is polynomial. For the problems of testing tree metrics (and ultrametrics), the paper gives a \(O(1/\varepsilon^2)\) query algorithm, an improvement from the previous bound of \(O(1/\varepsilon^6)\).

Sublinear Metric Steiner Tree via Improved Bounds for Set Cover by Sepideh Mahabadi, Mohammad Roghani, Jakub Tarnawski, Ali Vakilian (arXiv). This paper is on the classic metric Steiner tree problem. The input is an \(n \times n\) matrix of distances in a metric and a subset \(S\) of points. The aim is to estimate the minimum weight Steiner tree (a tree that connects all the terminals \(S\)). Getting a \(2\)-approximation is quite easy, since one can just consider a spanning tree on \(S\). A result of Chen-Khanna-Tan give a \((2-\eta)\)-approximation algorithm that runs in \(O(n^{13/7})\) queries (for some positive constant \(\eta\)). This paper gets the same approximation with \(O(n^{5/3})\) queries. The main technical work goes in designing a sublinear algorithm for a version of set cover problem, where the input set system is given as a matrix.

On Optimal Testing of Linearity by Vipul Arora, Esty Kelman, Uri Meir (arXiv). In property testing, it’s hard to get more fundamental than linearity testing. What is there new to say about this well-studied problem? This paper studies linearity testing under the online manipulations model of Kalemaj-Raskhodnikova-Varma. In this model, after every query of the tester, an adversary corrupts up to \(t\) entries on the input. Previous results show that linearity testing can be done in \(O(\log t + 1/\varepsilon)\) queries. But, the paper notes, all previous results require \(t \leq 2^{n/c}\) for some \(c \geq 2\). How far can be push \(t\)? Remarkably, the main result shows that \(t\) can be as large as \(2^n/\varepsilon^2\) and linearity testing is still feasible under online manipulations. The next result of this paper studies the property of low degree polynomials over the reals. The paper gives an optimal \(O(1/\varepsilon)\)-query tester for the property of being a \(d\)-degree polynomial.

Online versus Offline Adversaries in Property Testing by Esty Kelman, Ephraim Linder, and Sofya Raskhodnikova (arXiv). This paper is related to the online manipulations model discussed above. There is also an offline “erasure” model, wherein some coordinates/bits of the input are erased by an adversary. The original paper of Kalemaj-Raskhodnikova-Varma showed that sortedness of arrays can be tested with offline erasures, but cannot be tested with online erasures even when \(t=1\). This paper proves a complementary theorem. There are properties that can be tested with a \(O(1)\) queries for \(t = O(n/\log n)\) in the online manipulations model, but requires \(\Omega(\log n)\) queries in the offline setting with \(\Theta(n/\log\log n)\) erasures. So the online and offline models are incomparable in power. There is a similar result for a setting where \(t\) is constant. The lower bounds are shown using a property regarding repeated characters in strings.

News for October 2024

Four* papers on property testing last month! Lower bounds, upper bounds, distribution testing, quantum, and a new testing model!

* at least four. If we missed any, please let us know in the comments!

Lower Bounds for Convexity Testing, by Xi Chen, Anindya De, Shivam Nadimpalli, Rocco Servedio, and Erik Waingarten (arXiv). You’re given a membership oracle to a set \(S\) in \(\mathbb{R}^n\) (that is, query access to its indicator function \(f_S\colon \mathbb{R}^n\to \{0,1\}\)), and asked to decide if this set is convex, or “far from it”. This is a very natural and seemingly basic question— of course, we need to define what “far” means here, and the natural (normal, one may say) choice of underlying measure in \(\mathbb{R}^n\) is the standard Gaussian measure: \(d(S,T) = \Pr_{\mathcal{N}(0,I_n)}[ x \in S\Delta T]\).
Previous algorithms for this convexity testing question (and its tolerant testing analogue) are non-adaptive, and have \(2^{\tilde{O}(\sqrt{n})}\) query complexity. This paper shows that this is not just unfortunate, but also necessary: every non-adaptive tolerant tester for this question must make \(2^{\Omega(\sqrt[4]{n}}\) queries, and every (possibly adaptive) one-sided tester must have polynomial query complexity.

Replicable Uniformity Testing, by Sihan Liu and Christopher Ye (arXiv). In property testing, the algorithm must say YES with high probability on inputs which have the property, and NO with high probability on those which are far. On anything else, the algorithm is off the hook and can output either. This is typically considered to be fine, and, in any case, necessary to be able to obtain ultra-efficient algorithms. But what if, in this third case, we wanted to put the algorithm partially back on that hook, and required it to be consistent? The algorithm can answer either YES or NO, sure, but if I run it again on that same input, it should give the same answer with high probability. This is in line with a recent line of works on replicable algorithms, and is non-trivial to achieve in (the standard model of) distribution testing, where a distribution testing algorithm only gets to see random samples from the distribution, and thus needs to have a replicable behavior over that randomness. This paper introduces the question of replicable distribution testing, and provides both upper and lower bounds (essentially matching, with an asterisk) for the flagship task of uniformity testing.

Quantum property testing in sparse directed graphs, by Simon Apers, Frédéric Magniez, Sayantan Sen, and Dániel Szabó (arXiv). Graph property testing has a long and rich history in the classical setting, spanning more than two decades. There are several testing models, depending on whether the graph is dense, sparse, and directed or not: and even in the sparse, directed case, it is important to sometimes only allow outgoing edge queries. All these variants capture different meaningful scenarios, and relations and separations between them are known. This paper opens the direction of quantum testing for sparse graphs, either directed or not. The authors investigate what advantage quantum computers can bring for graph testing in this setting, and show one natural property for which a quadratic speedup exists: \(o(\sqrt{n})\) quantum queries in the outgoing-edge-query-only (unidrectional) sparse model, while classically \(\Omega(n)\) are necessary. They also show that this is not always the case: quantum testing of 3-colorability, as in the classical case, does not admit a \(o(n)\)-query tester.

Relative-error monotonicity testing, by Xi Chen, Anindya De, Yizhi Huang, Yuhao Li, Shivam Nadimpalli, Rocco Servedio, and Tianqi Yang (arXiv). Property testing of Boolean functions is defined “absolutely“: the distance between two functions is the fraction of the domain on which they differ, i.e., \(\displaystyle\frac{|f^{-1}(\{1\})\Delta g^{-1}(\{1\})|}{2^n}\)
This makes sense when the functions have a reasonable number of satisfying assignments: but may be much less meaningful for sparse functions, which only are non-zero on a \(o(1)\) fraction of the inputs—for instance, functions where “all the action” is concentrated in a tiny subcube of the hypercube. All these functions are vanishingly close to each other! To address this, the authors introduce a new distance notion, relative-error, where the distance from \(g\) to \(f\) is scaled by the sparsity of \(f\):
\(\displaystyle\frac{|f^{-1}(\{1\})\Delta g^{-1}(\{1\})|}{|f^{-1}(\{1\})|}\)
This requires a slightly different access model to avoid trivial impossibility results, so the tester is augmented with sampling access to satisfying assignments of \(f\), on top of query access to \(f\) (as otherwise it may just never even find one satisfying assignment). After introducing and motivating this testing model, the paper initiates its study in the specific case of testing monotonicity of Boolean functions.

News for September 2024

So, we had a pretty fantastic September. Besides the fact that September saw eight papers, the Computer Science community also bagged two Nobel Prizes(!) — reactions to which are kind of mixed from what I see around me. Anyhow without further delay, let us circle back to property testing. So, eight papers, yes. Without further ado, let us look at our spread.

Public Coin Interactive Proofs for Label-Invariant Distribution Properties by Tal Herman (ECCC) Suppose you have an unknown distribution \(\mathcal{D}\) supported over \([N]\). Suppose I claim that this distribution has entropy \(\texttt{blah}\). You have sample access to \(\mathcal{D}\) and you want to check my claim. To this end, you decide to engage me, a suspicious shady prover, in an Interactive Protocol where you, the verifier is restricted to use public coin tosses. The main result of this paper asserts that you can do this with a mere \(\widetilde{O}(N^{2/3})\) samples. You also get the same bound on the communication complexity. What’s more is that you get algorithms with running time of the same order. What’s even more, is that you get similar algorithms for all label invariant properties of \(\mathcal{D}\). You can contrast this with the seminal result of Valiant and Valiant from 2011 which asserts that you can approximate the distance between your input distribution \(\mathcal{D}\) and the label invariant property of interest (without any prover) using \(\Theta(N/\log N)\) samples. So, this result shows that the computation under the interactive model is more efficient than standalone computation even in the public coin toss model.

How to Verify Any (Reasonable) Distribution Property: Computationally Sound Argument Systems for Distributions by Tal Herman and Guy Rothblum (arXiv) Let us consider the same setup as above. Again, you have an unknown distribution (supported over \([N]\)) which you have sample access to and I assert that this distribution has a certain property. You want to verify whether my claim is correct or bogus. The main algorithmic result of this paper has a cryptographic ring to it: Assuming the existence of collision resistant hash functions, the authors show that for any reasonable distribution property, you have set up an interactive protocol where the verifier can decide whether or not the prover’s claim is bogus using \(\widetilde{O}(\sqrt N)\) samples. Also, the communication complexity is of the same order.

Random local access for sampling k-SAT solutions by Dingding Dong and Nitya Mani (arXiv) I find this paper pretty intriguing. So, here is the setup. I give you some \(k\)-SAT instance and I promise that no variable in this instance shows up in more than \(d\) clauses. Recall that for \(d \leq 2^k/(2e k)\), Lovasz Local Lemma assures you that there exists a satisfying assignment. What’s more is that the famous Moser-Tardos algorithm even allows you to find one satisfying assignment in polynomial time. In a beautiful work, in the regime where \(d \leq 2^{ck}\) (where \(0 < c < 1\) is a sufficiently small constant), Moitra gave samplers which return an almost uniformly random satisfying assignment. Note that this is not possible direct adaptation the Moser-Tardos algorithm. Anyhow, back to the setting considered in this work. So, consider the following sublinear challenge. Denote by \(\mu\) the uniform distribution supported over all satisfying assignments to the given \(k\)-SAT instance where each variable shows up in more than \(d \leq 2^{ck}\) clauses. I want you to sample the assignment \(\sigma(v)\) for a variable \(v\) from the marginal \(\mu_v\) induced by \(\mu\) on \(v\) fast (in \(poly(\log n)\) time) in expectation. Of course this has to be done in some consistent fashion overall which is very LCAish in flavor and I will not detail that here. Rest assured the featured paper rises up to the challenge.

New Direct Sum Tests by Alek Westover, Edward Yu, Kai Zheng (arXiv) We say that a \(\mathbb{F}_2\)-valued function \(f\) over the \(d\)-dimensional grid \(f \colon [n]^d \to \mathbb{F}_2\) is a direct sum if there are \(d\) one-dimensional functions \(L_i \colon [n] \to \mathbb{F}_2\) such that \(f(x) = \sum_{i=1}^d L_i(x_i)\). In a paper we covered in October 2019, Dinur and Golubev presented an algorithm for direct sum testing and left its analysis for future research. The featured paper analyzes this test and shows that it is indeed a bonafide direct sum tester. I omit the description of the tester. I will just leave with one note — this looks like an appetizing read for Boolean Fourier Analysis aficionados.

Directed Hypercube Routing, a Generalized Lehman-Ron Theorem, and Monotonicity Testing by Deeparnab Chakrabarty and C. Seshadhri (arXiv) This is a very refreshing read with (our very own) Seshadhri as one of the authors. Chakrabarty and Seshadhri have teamed up (often in a trio with Hadley Black) in their attempts to understand the deep dark secrets of testing boolean monotonicity over the boolean hypercube. The featured paper conjectures a bold generalization of Lehman-Ron theorem over the hypercube and suggests that the conjectured routing once established could pave the path forward towards a more transparent understanding of directed isoperimetric inequalities over the boolean hypercube. In my opinion, it is worth your while to check this one out.

Lempel-Ziv (LZ77) Factorization in Sublinear Time by Dominik Kempa and Tomasz Kociumaka (arXiv) A pretty unique topic. The main result of this paper is what you see in the title — after 50 years since its introduction, finally we can factorize LZ77 in sublinear time. If you are like me, you might be asking but what does that mean? Quoting from the abstract

Lempel-Ziv (LZ77) factorization is a fundamental problem in string processing: Greedily partition a given string T from left to right into blocks (called phrases) so that each phrase is either the leftmost occurrence of a letter or the longest prefix of the unprocessed suffix that has another occurrence earlier in T.

Indeed, the abstract has more fascinating information about this problem. Quoting again.

Sublinear-time algorithms are known for nearly all other fundamental problems on
strings, but LZ77 seems resistant to all currently known techniques.

Looks like new year came early for PTReview readers. This paper promises to be fun by the contents I sampled so far.

Computing String Covers in Sublinear Time by Jakub Radoszewski and Wiktor Zuba (arXiv) A substring (actually prefix) \(C\) is called a cover of text \(T\) is \(T\) can be constructed by concatenations and superpositions of \(C\). Suppose the text string \(T\) contains \(n\) symbols from some alphabet of fixed size. The main theorem of the featured paper asserts that given a string \(T\), you can find a representation of all of its covers (at most \(n\) of them — they are all prefixes) in merely \(O(n/\log_{\sigma} n)\) time. This bound is also shown to be optimal — indeed the authors show that you cannot compute a representation (in a certain model formulated by Charalampopoulos et al in FOCS 2020) for the shortest cover in less than \(o(n/log n)\) time.

Quantum Channel Testing in Average-Case Distance by Gregory Rosenthal, Hugo Aaronson, Sathyawageeswar Subramanian, Animesh Datta and Tom Gur (arXiv) This paper considers a new diversion in quantum land. Namely, it considers the task of testing quantum channels. The setup is this: I have a \(d\)-dimensional quantum system which is just a \(\mathbb{C}^{d \times d}\) psd matrix over complex numbers with trace \(1\). A quantum channel is a just a linear transformation that maps \(d_{in}\) dimensional quantum systems to a \(d_{out}\)-dimensional quantum system. With repsect to some appropriate norm (the so-called diamond norm), one of the results in this paper proves a \(poly(d_{in})/\varepsilon\) lower bound for testing identity to any fixed channel in diamond distance. This lower bound is shown to hold in a very strong query model appropriate for the quantum setting.

New for August 2024

Apologies for the late post! After the relative silence of last month, we’re getting back to a moderate cadence of papers. Some distribution testing, quantum testing, learning and testing. We’ve also added a non-sublinear paper on distributions that should be of interest. And here’s the roundup.

Efficient Testable Learning of General Halfspaces with Adversarial Label Noise by Ilias Diakonikolas, Daniel M. Kane, Sihan Liu, and Nikos Zarifis (arXiv). This paper is on the recent model of testable learning introduced by Rubinfeld-Vasiliyan. Consider learning halfspaces over the Gaussian distribution. We have sample access to an input function \(f:\mathbf{R}^d \to \{0,1\}\), where our aim is learn the closest halfspace to \(f\). The samples comes from some fixed, underlying distribution \(\mathcal{D}\). But it is often infeasible to validate this distributional assumption, even in the property testing framework. A tester-learner pair will try to test this assumption, and if it accepts, apply the learning algorithm. The guarantee is: if \(\mathcal{D}\) is indeed (say) Gaussian, then the learning algorithms works as desired. If the tester accepts and the learner outputs a hypothesis (say, halfspace) \(h\), then it is guaranteed that \(h\) is close to \(f\) according to \(\mathcal{D}\), even if \(\mathcal{D}\) is far from Gaussian. This last part makes the whole setup interesting; the distribution tester might fail to reject the distribution, but we can trust the output hypothesis! There have been many results on learning homogenous halfspaces under the Gaussian distribution. So the hypothesis class consists of halfspaces going through the origin. This paper is about general (inhomogenous) halfspaces. At first blush, this might seem like a simple issue; we’re just adding a constant term to the halfspace. But existing techniques break down, often because they’re solving an optimization problem of minimizing error around a band close the origin. This paper gives a careful reduction to the “nearly” homogeneous case, and gives the first polynomial sample tester-learner pair for this problem.

Tolerant testing stabilizer states by Srinivasan Arunachalam and Arkopal Dutt (arXiv). Let us start with a familiar classical problem, low degree testing. Given access to a function \(f:\{0,1\}^n \to \{0,1\}\), we wish to test if \(f\) is a quadratic polynomial (over \(\mathbb{F}_2\)). There exist testers based on the Gowers-norm: basically, compute various (constant dimensional) discrete derivatives and check they are consistent with a quadratic function. These discrete derivatives can be analyzed using Fourier analysis, and the main aim is show that a function that “locally” (in terms of derivatives) behaves like a quadratic is indeed globally close to being one. This method can be used to get tolerant testers for quadratic polynomials. This paper is on a quantum generalization of this testing result. The input is a qubit \(|\psi_f\rangle\), promised to be a “phase state”. A phase state has a Boolean function \(f\) embedded in it, because one can write a phase state as a linear combination of \(2^n\) “base” states, with the coefficients being Boolean. A “stabilizer state” is one where the function \(f\) is a quadratic (or so I believe, I’m probably exposing my ignorance of quantum mechanics). This paper uses the Gowers norm techniques to give the first quantum tolerant tester for stabilizer states.

Improved Bounds for High-Dimensional Equivalence and Product Testing using Subcube Queries by Tomer Adar, Eldar Fischer, and Amit Levi (arXiv). Consider distribution testing on high-dimensional data, so the domain is \(\{0,1\}^n\). A nice model for distribution tester is the subcube conditioning model of Bhattacharyya and Chakraborty. Suppose we fix any subset \(S \subseteq [n]\) coordinates with \(x_S\). We can generate a sample \(y\) from the distribution, conditioned on \(y_S = x_S\) (meaning, \(y\) agrees with \(x\) on \(S\)). The problem is to perform equivalence testing of distributions on this model. Previous results got \(O(n^2/\varepsilon^2)\) query algorithms, and this paper give a significantly improved algorithm making \(O(n/\varepsilon^2)\) queries. Interestingly, the algorithm only makes weaker queries. One distribution is only accessed by “marginal queries”. So, given \(x_S\) as before, but we only sample the marginal distribution over coordinate \(i\), conditioned on \(S\) being fixed as \(x_S\). (Hence, the output is a single bit. Also, we note that the other distribution is accessed by prefix queries, a weaker version of subcube queries.) These generalizations lead to more results, on testing equivalence in the interval query model, and for testing the property of product distributions. This paper also proves a \(\Omega(\sqrt{n}/\varepsilon^2)\) lower bound for testing product distributions.

Parallel Sampling via Counting by Nima Anari, Ruiquan Gao, and Aviad Rubinstein (arXiv). This isn’t a “typical sublinear algorithm” per se, but I think it is quite interesting to those of us who think about sublinearity, adaptivity, and distributions. This result has connections to the previous paper. Our aim is to sample from an unknown distribution \(\mu\) over \([q]^n\). We have access to “marginal queries” as described above. This problem appears in large language models, wherein neural nets are trained on various marginals (next word), but the output is a sentence (list of words). Observe there is a simple “\(O(n)\) round” algorithm. Without any fixing, query the marginal of the first coordinate. Fix the first coordinate, query the marginal of the second coordinate. Fix the first two coordinates, rinse and repeat. This requires \(n\) rounds with the marginal query. In this model, polynomially many marginal queries can be made in a single round, and the aim is to minimize the number of rounds (basically, bounding the adaptivity). This paper gives a \(\widetilde{O}(n^{2/3})\) round procedure for sampling, and shows an \(\Omega(n^{1/3})\) lower bound.

News for July 2024

This month we have only one paper. I imagine the community will be on fire when we come back with our news for August.

Constant Degree Direct Product Testers with Small Soundness by Mitali Bafna, Noam Lifshitz, and Dor Minzer (arXiv) (Please excuse my lack of technical comfort with the contents of this paper. Corrections Welcome) As the title indicates, and the authors also emphasize, the primary goal of the featured paper is to construct direct product testers with constant degree. Let us try to unpack this a little by first understanding what does a direct product test mean. So I have this function \(f \colon [n] \to \{0,1\}\). I give you access to this function in an indirect way via a table \(F\) to which you have query access. The central task in direct product testing is to check whether \(F\) is a valid encoding of \(f\) by querying \(F\) on a small number of locations. This paper focuses on those properties which you can test with two queries. Dinur and Kaufman noted that high dimensional expanders can be leveraged towards obtaining \(2\)-query direct product testers. The main result of this paper shows that there are high dimensional expanders for which the Dinur-Kaufman direct product test has small soundness.

News for June 2024

A nice diverse month, this June 2024. We have a selection of papers on quantum property testing, shortest paths, polynomial threshold functions, and nearest neighbor search. And a nice survey on a closely related topic. Onward with the papers!

Invitation to Local Algorithms by Václav Rozhoň (arXiv). This is a great survey on local algorithms, a topic (roughly) about message passing distributed algorithms on graphs. While that is not a sublinear algorithm per se, the core combinatorial question has relevance to our readers. Informally, a “local problem” is one where, if a solution is incorrect, that can be determined by looking at a small radius around some vertex. For example, consider problems like maximal independent set, matching, etc. The problem is to construct such a solution in a distributed manner by only looking at low radius balls. There is a direct connection with Local Computation Algorithms (LCAs), with the primary difference being the complexity resource. In Local Algorithms as defined, one is interested in the number of rounds of computation, corresponding to the radius of balls. In LCAs, we care about the number of vertices seen, which is the size of the balls. The survey gives a detailed discussion of these connections.

Testably Learning Polynomial Threshold Functions by Lucas Slot, Stefan Tiegel, and Manuel Wiedmer (arXiv). Consider the classic model of agnostic learning with a distributional assumption. Our aim is to learn a function \(f: X \to \{-1,1\}\). The learner gets labeled samples \((x,f(x))\), where \(x\) is drawn from an unknown distribution \(\mathcal{D}\). In agnostic learning, we aim to output a hypothesis \(\hat{f}\) such that \(\|f – \hat{f}\|\) is small, where distance is measured according to \(\mathcal{D}\). Often one makes distributional assumptions (like \(\mathcal{D}\) is Gaussian) to get non-trivial results. This is a severe limitation, since such distributional assumptions cannot be validated. A recent model of Rubinfeld-Vasilyan asks for “tester-learner” pairs that address this issue. We first run a “tester” to check the property (say, Gaussian) of the distribution. If the tester passes, then we run the learner. If \(\mathcal{D}\) satisfies the distributional property, the tester is guaranteed to pass (whp). If the tester passes, then the learner is guaranteed to output a valid hypothesis. Thus, the tester is allowed to pass distributions that may be far from satisfying the property, but in such situations, the learner outputs a correct hypothesis. This paper gives such tester-learner pairs for learning polynomial threshold functions with polynomially many samples. Previously, such learning results were not known even for degree-2 PTFs with respect to the Gaussian distribution.

A Sublinear Algorithm for Approximate Shortest Paths in Large Networks by Sabyasachi Basu, Nadia Kōshima, Talya Eden, Omri Ben-Eliezer, C. Seshadhri (arXiv). This paper brings a mix of a classic problem, a real-world observation, and a new graph class. Finding shortest paths in graphs is about as classic as it gets. There is a plethora of applied work on shortest paths algorithms for real-world networks, much of which is based on landmarking. One precomputes distances between chosen landmarks, and then uses those to output shortest path distance queries. This paper asks: is it possible to get approximation shortest paths in sublinear time? Hence, we are not even allowed to preprocess the entire graph. This paper builds on previous work in social networks about “core-periphery” structure. The core is a denser, small region of the graph; the rest of the vertices form the periphery that connect to the core. The hypothesis is that shortest paths in real-world graphs typically go via the core. Given the (small) core, one can build small sublinear data structures that quickly answer shortest path queries. The paper uses insights from previous work on core-periphery structure, and gives a practical sublinear algorithm for computing approximate shortest paths. If the graph comes from a Chung-Lu distribution, then queries can be provably answered in \(n^{o(1)}\) time.

Quantum Property Testing Algorithm for the Concatenation of Two Palindromes Language by Kamil Khadiev and Danil Serov (arXiv). An early result of property testing is that all regular languages can tested in constant time. But the simple (non-regular) language \(\mathcal{L}\) of strings formed by concatenating two palindromes requires super-constant queries. Specifically, the complexity of property testing \(\mathcal{L}\) is \(\Theta(\sqrt{n})\) (ignoring log and \(\varepsilon\) factors). Here, \(n\) denotes the string size. This paper shows that there exist quantum property testing algorithms that beat this bound. There is a quantum property tester for the language \(\mathcal{L}\) that makes \(\widetilde{O}(n^{1/3})\) queries. The paper also shows that quantum query complexity of the exact decision problem is \(\Theta(\sqrt{n})\). Thus, one gets non-trivial quantum speedup for both the property testing and exact problem.

A Bi-metric Framework for Fast Similarity Search by Haike Xu, Sandeep Silwal, and Piotr Indyk (arXiv). Nearest-neighbor (NN) search is one of the most important algorithmic tasks in modern data analysis. The usual setting is that we have a set of \(n\) points over a metric, denoted by \(D\). We preprocess the points and construct a data structure. Given a query point \(q\), we wish to find the (approximate) closest points from our data set, in time sublinear in the data size. This paper introduces a bi-metric setting. Think of \(D\) as expensive to compute, while there exists a cheap “proxy metric” \(d\). For example, if the points represent images, the expensive metric \(D\) could be some complex (but semantically accurate) metric, while \(d\) may represent a simple Euclidean metric over an embedding. Formally, \(d\) is a (large) constant factor approximation of \(D\). This paper gives an algorithm that performs nearest neighbor search, but only preprocesses over \(d\). Given, a query \(q\), it makes sublinear queries to the expensive \(D\). All in all, it is a truly sublinear algorithm in terms of \(D\), and leverages the preprocessing over the cheap metric \(d\). Technically, this paper gives a meta-algorithm that can be applied to any “base” NN algorithm. The paper proves results for two popular NN algorithms, and gives extensive empirical evidence for the underlying approach.

News for May 2024

May came with 3 new papers on property testing algorithms — or inspired by them.

Interactive Proofs for General Distribution Properties, by Tal Herman and Guy Rothblum (ECCC). Following a fruitful line of work (including by the authors themselves: see, e.g., this previous monthly post), this paper considers interactive proofs for distribution testing: Merlin and Arthur have data over a universe of size \(n\), Arthur wants to test properties of that data (probability distribution), but he has much less data (samples) than Merlin.
As it turns out, as long as the property he’s interested in can be checked efficiently (computationally: via a small-depth circuit), then Arthur can do it with strongly sublinear sample complexity: he needs only \(n^{1-\Omega(1)}\) samples, even for tolerant testing! And all that’s needed is a small number of rounds of interaction with Merlin. And even more, all (honest) parties can do that via a computationally efficient protocol…

Oracle-Checker Scheme for Evaluating a Generative Large Language Model, by Yueling Jenny Zeng, Li-C. Wang, and Thomas Ibbetson (arXiv). This paper draws inspiration from property testing and program checking (à la Blum, Luby, and Rubinfeld) to check the output of large language models (LLMs): specifically, for the task of entity extraction: the authors formalize how to view entity extraction as a homomorphism, and then assess empirically what using a property tester for linearity leads to. Overall, it sounds like an interesting (and somewhat unexpected?) use of property testing for LLM trustworthiness assessment!

Property testing in graphical models: testing small separation numbers, by Luc Devroye, Gábor Lugosi, and Piotr Zwiernik (arXiv). Here too, ideas from property testing are used, this time in the context of high-dimensional (Gaussian) graphical models. This paper focuses on testing properties of the structure of the graphical model: given query access to the covariance matrix \(\Sigma\) consistent with some underlying graph structure \(G\), can we test whether this structure is a tree? Is it has small separation number?
The focus differs a little from the classical setting of property testing, in that there is no distance parameter and the goal is to get an exact decision algorithm (adaptive, but with unbounded query complexity: rejecting graphs that are far from the property as a function of the unknown distance parameter, and always accepting graphs with the property). But besides this small variation, great to see more uses of property testing in the wild!

News for April 2024

We have seven papers for you this month. Our potpourri includes two papers apiece on each of the following themes: Distribution Testing, property testing with a quantum twist, graph property testing, and finally two papers on testing function properties. A featured paper this month covers progress on optimal non-adaptive junta testers. Without further ado, let’s dig in. As usual, please let us know if I missed any papers.

Testing \(C_k\) freeness in bounded-arboricity graphs by Talya Eden, Reut Levi, and Dana Ron (arXiv) Our post from July 2021 highlighted an open problem posed by Goldreich. This problem asks if it is possible to transform property testers for bounded degree graphs to property testers for unbounded degree graphs with general arboricity. The featured paper answers the question Goldreich posed in the negative. In particular, testing \(C_4\) freeness in bounded arboricity graphs (with possibly unbounded degree) already admits an \(\Omega(n^{1/4})\) one-sided lowerbound. Up to \(\log\) factors, the paper also proves a matching upperbound. The same bounds hold for \(C_5\)-freeness. Further, for every \(k \geq 6\), the paper proves an \(\Omega(n^{1/3})\) one-sided lower-bound.

Directed Isoperimetry and Monotonicity Testing: A Dynamical Approach by Renato Ferreira Pinto Jr (arXiv) The featured paper considers a classic of property testing. So, you want to test whether an input real-valued function \(f \colon [0,1]^d \to \mathbb{R}\) over the solid cube is monotone or whether it is \(\varepsilon\)-far from being monotone. It is convenient to require that the input function better be differentiable and Lipschictz (for those of you keeping scores, this should remind you of our post from July 2023 where we covered a previous work in the same setting again by Renato). Motivated by the success of testers developed for the boolean hypercube domain, a natural analogy suggests to have in addition to a standard value oracle, an additional derivative oracle which takes as input a point \(x \in [0,1]^d\) and a direction \(\mathbf{v} \in \mathbb{R}^d\). This oracle allows you to query directional derivative at \(x\) along \(\mathbf{v}\). Renato’s punchline is a directed Poincare Inequality which in the above setup, connects the distance to monotonicity to the square root of directed analog of a suitable notion of influence. The techniques used in the paper seem intriguing. They are inspired by the original proof of the classic Poincare Inequality. In particular, as Renato notes “the main theme of our proof of this result is the study of the convergence of a partial differential equation.”

Optimal Non-Adaptive Tolerant Junta Testing via Local Estimators by Shivam Nadimpalli, Shyamal Patel (arXiv) The problem of Tolerant Junta testing is no stranger to our regular readers. This paper is fairly intriguing for those of you who care about testing function properties. As the abstract notes, this is the first paper to nail down the true (non-adaptive) query complexity for tolerantly testing some natural property of boolean functions. The main result of this paper presents a lower bound of \(2^{\widetilde{\Omega}(\sqrt{k \log(1/\varepsilon)})}\) on the task of non-adaptive tolerant \(k\)-junta testing. The paper presents an almost matching non-adaptive algorithm as well.

Testing Intersectingness of Uniform Families by Ishay Haviv and Michal Parnas (arXiv) Let \(\mathcal{F}\) denote an intersecting family all sets in which are subsets of an underlying \(n\)-element universe. This means that for any \(F_1, F_2 \in \mathcal{F}\), you have that \(F_1 \cap F_2 \neq \emptyset\). Some of you might immediately recall Erdos-Ko-Rado theorem which asserts an upperbound on the size of such an intersecting family where every set has size \(k\). Another famous result is Lovasz’s (positive) resolution of Kneser’s conjecture which asserts an lowerbound on the number of intersecting families you need to cover all \(k\)-subsets of \([n]\). For ease of discussion, let us follow the authors and cook up a property testing problem \(\textsf{INTERSECTING}_{n,k, \varepsilon}\). In this problem, you are given access to the indicator \(f \colon {[n] \choose k} \to \{0,1\}\) encoding the family \(\mathcal{F}\) and you ask whether \(\mathcal{F}\) is intersecting or whether it is \(\varepsilon\)-far from it. Recently, Chen-De-Li-Nadimpalli-Servedio explored the non-uniform-set-size variant of this problem (which we covered here). They presented one-sided algorithms with a non-adaptive query bound of \(2^{\widetilde{O}(\sqrt{n \log(1/\varepsilon)})}\) for this problem and they also showed an almost matching lowerbound. The featured paper contrasts these results with the situation you obtain when all the set sizes are indeed the same (that is, the paper explores the testability of \(\textsf{INTERSECTING}_{n,k, \varepsilon}\). Of the numerous results in the paper, let me highlight one: you can test \(\textsf{INTERSECTING}_{n,k, \varepsilon}\) with two-sided error with a mere \(O\big(\log n \cdot \frac{1}{\varepsilon} \big)\) queries. This result holds for \(\varepsilon \geq \Omega(k/n)^r\) for a fixed \(r\).

Distribution-Free Testing of Decision Lists with a Sublinear Number of Queries by Xi Chen, Yumou Fei and Shyamal Patel (arXiv) Decision lists are a popular and convenient way to represent a boolean function which is learnable from examples. In more detail, a decision list is a collection of pairs \((\alpha_1, \beta_1), (\alpha_2, \beta_2), \ldots (\alpha_k, \beta_k)\) (here, \(\alpha_j\)’s denote literals and \(\beta_j\)’s are bits). This list defines a boolean function \(f \colon \{0,1\}^n \to \{0,1\}\) as follows: for any \(\mathbf{x} \in \{0,1\}^n\), you let \(f(x) = \beta_j\) where \(j\) is the smallest index such that \(\alpha_j\) is satisfied by \(\mathbf{x}\). With this (not super rigorous) definition out of the way, I can now tell you about the main result of this featured paper. The main theorem of this paper asserts that in the distribution-free framework for property testing, you still get sublinear time algorithms for testing decision lists. In particular, thanks to this paper, now you can engineer a two-sided adaptive distribution free algorithm for testing decision lists which makes runs in time \(\widetilde{O}(n^{11/12})\).

Simple algorithms to test and learn local Hamiltonians by Francisco Escudero Gutiérrez (arXiv) The featured paper considers the task of (tolerantly) testing and learning an \(n\)-qubit \(k\)-local Hamiltonian from queries to its evolution operator. The main result of the paper asserts that the task of Tolerant Hamiltonian Locality Testing can be done with a mere \(1/(\varepsilon_2 – \varepsilon_1)^8\) queries to the evolution operator.

Local Test for Unitarily Invariant Properties of Bipartite Quantum States by Kean Chen, Qisheng Wang, Zhicheng Zhang (arXiv) Lots of investigations on quantum entanglement consider bipartite quantum states. The featured paper considers the task of testing properties of bipartite pure states. The paper begins by recalling a helpful duality between a property of bipartite pure states being unitarily invariant on one part, and the property being locally testable on the other part. This duality does not offer any insights into the query complexity of the local tester. The main result of the paper proves that the local tester indeed achieves optimal sample complexity over all global testers.

Learning Intersections of Halfspaces with Distribution Shift: Improved Algorithms and SQ Lower Bounds by Adam R. Klivans, Konstantinos Stavropoulos, Arsen Vasilyan (arXiv) Consider the standard setup of supervised learning with a twist. Namely, the distribution from which you receive samples in the training phase (\(\mathcal{D}\)) and the distribution from which the samples are taken in the test phase (\(\mathcal{D}’\)) are not necessarily the same (and hence the name — distribution shift). For example, this situation may arise if you use one set of equipments in the training phase and another during the test phase. This model was explored in a previous work by the same set of authors where they considered the task of obtaining a low-error classifier (on \(\mathcal{D}’\)) when they are additionally told that the training samples pass some helpful test. In this paper, the authors explore the problem of testing intersections of halfspaces with respect to Gaussian Training Distributions. The main contribution of the paper is a set of new positive results which extend the results from PAC learnability to the learnability under the new model. Indeed, under some reasonably mild assumptions, the bounds in the new model match the bounds from the standard PAC model. For quantitative details, please refer to the paper.

Announcing Monotonicity Festival at IIT Bombay

IIT Bombay is organizing an online Monotonicity Festival which is dedicated to understanding the impressive progress over the last couple of decades in Testing Boolean Monotonicity over various partially ordered domains (most notably, the Boolean Hypercube and the Hypergrid). Five of the lectures in this ongoing festival (with six planned lectures in total) have already taken place. Tomorrow is the last lecture where (PTReview’s own) Seshadhri will shed some light on the Directed Talagrand Inequality central to the analysis of the Monotonicity tester presented in the seminal work of Khot-Minzer-Safra.

The talk will begin at 10:30 AM India time tomorrow (April 30, 2024). Here is the zoom link: https://us06web.zoom.us/j/85365027303?pwd=hreOInC1dMwdFYnTOVa0nblSs9kDz6.1

Also, here is the link for all the YouTube playlist where we will upload all the talks: https://www.youtube.com/playlist?list=PLuoJqx7PPeVKzhTgFbMQH1zvF40yClpES

Thanks to Hadley Black, Deeparnab Chakrabarty and C. Seshadhri for kindly agreeing to give the talk.